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Abstract—The paper presents a rigorous analysis of synchro- 1 = n(v)
nized oscillators. The analyzed circuits exhibit strongly nonlinear
behavior such as frequency lock and existence of multiple solu-

0

+
tions and yet their behavior can be fully determined by large
signal characteristics obtained from harmonic balance simula-

tion. The results can be directly applied to diode and transistor
v G

oscillators and can also serve as a benchmark in testing nonlinear
simulators.
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1. INTRODUCTION 1 1

T HE PAPER presents simulation and theory of a synchro-

nized nonlinear oscillator. It is based on the theory of

averaging [1], [2], presented in terms familiar to a design

engineer and illustrated by a transistor oscillator circuit.

We intend to achieve three goals:

1. Introduce a simple yet rigorousl analysis of synchroniza-

i = n(v)

+

v

—

(b)

tion in typical oscillators.

2. Present applications of harmonic balance simulation to
Fig. 1. Oscillator with the locking signal i. = b cos wt (a) Generic oscillator

model. (b) Meissner oscillator.

a strongly nonlinear circuit. In particular we present a simple

algorithm for finding oscillations and stability zones.

3, Present a benchmark against which nonlinear simulators
case of the circuit (described by the van der Pol oscillator)

the characteristics are well known and can be used to check
can be tested.

We show that if a high-Q oscillator has a ~-shaped nonlin-
accuracy of CAD simulators.

ear characteristics, then one can rigorously deduce important

design features of the circuit, such as the number of solutions

and their stability, nonlinear resonance characteristics and

lock-in regions, and also the parameter values for which the

unique solution exists. The results m-e formulated in terms

of “large signal” characteristics and are readily applicable to

diode and transistor oscillators.

In the final section of the paper the synchronized oscillator

is used as a benchmark against which different commercially

available nonlinear simulators can be tested. We believe that

there is a great need for such a benchmark in the engineering

community. Our circuit seems to be ideally suited for this

purpose: it is very simple, and yet it models frequency lock,

possesses multiple solutions, and has interesting resonance
characteristics which bend onto themselves (that poses an

additional challenge for CAD packages—namely the ability to

draw the multivalued characteristics). Moreover for the special

11, CIRCUIT DESCRIPTION

2.a Generic RLC Oscillator with Synchronizing Signal

Let us consider a simple oscillator with locking signal

is = b cos wt, shown in Fig. la, in which the resonator is

modelled by a parallel RLC circuit and the active part of the

circuit by an N-shaped nonlinear characteristic:

i = n(v)

where n’(0) can be interpreted as the small signal conductance

of the active part of the circuit.

The circuit is described by a simple second other equation:

~~=u

dt

C$ = – i~ – n(v)

–Gv–bcoswt (1)
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One can further argue that various resonators are (at least

about the resonate) well modelled by an RLC resonator,

and that transistors with feedback, and of course negative-

resistance diodes, have the N -shaped characteristics. There-

fore the circuit of Fig. 1(a) can be treated as a generic

oscillator, which possesses the main features of any high-Q

oscilator circuit.

Throughout the paper we shall use two examples: (i) Meiss-

ner oscillator (Fig. 1(b)) to illustrate design applications and

(ii) van der Pol oscillator (Fig. l(a)) with n(v) = –W +

v3/3, G = O) for connection to well-established theory.

i= n(v)

I I

(a)

i = n(v)

2.2 Simplified Circuit Equations

When the circuit has high Q and we expect the oscillations

to be close to sinusoidal, then it is convenient to introduce
Uvs(”

amplitude and phase (a, q5) as the new variables defined by:
(b)

v(t) = a cos (d + @)
sin (d+ fj)

iL(t)= a (2)
WL

and to work with the following “averaged”2 equations:

Ga + N(a) + b cos (@)
a’=—

2C
(3)

(4)

where (a, ~) denote the amplitude and phase of oscillations,

b denotes the amplitude and w the frequency of the locking

signal, w; = l/LC the natural frequency, 8 = C(W2 –

w;/w) % 2C(W – Wo) “the amount of detuning,” and

7r

N(a) = ~
/

n(acos 0) cos OM (5)
no

denotes the fundamental of the current. We show in the

next section that N(a) can be easily obtained from harmonic

balance simulators,

One proves [1, 2] that for high-Q oscillators the amplitude

and phase of oscillations are well approximated by the constant

solutions of (3) and (4) and that if the constant solutions are

stable so are the oscillations. Let us note that the constant so-

lutions of the averaged equations coincide with those obtained

by the harmonic balance method [3], [5], [8].

2.3 Nonlinear RF Characteristics N(a)

The nonlinear RF characteristics N(a), defined above, is the

fundamental component of Fourier expansion of the current

through the tionlinear element and has the physical meaning

of “large-signal amplitude,” similar to phasors used in linear

analysis. It can be used to define “large signal” impedance

and “large signal” S-parameters [7], [9].3 It is the basic tool

in nonlinear design. When expressed in terms of S-parameters

it has been applied to design of free running oscillators in [6],
[7], [9], [12].

2The detailed transformation of (1) into (3)-(4) is presented in Appendix
IL

3Where the phasors used in the standard definition are replaced by the

fundamental. Let us also note that the S-parameters as measured on a vector
anatyzer are indeed the ratios of fundamentals of the incident and reflected
signal.

Fig. 2. Simulation of the large signat characteristics AJ(a), ws(t) = a cos tit.
(a) Generic oscillator, (b) Meissner oscillator.

In this paper, N(a) and N’(a) (which is the derivative of

N(a) with respect to a) become the main vehicle in apply-

ing the theoretical results on averaging to the characteristics

obtained from the harmonic balance simulation.

They are calculated as follows: In the oscillator circuit we

put the locking signal equal to zero and replace the resonator

by a sinusoidal voltage source as shown in the Fig. 2(a) and

(b) (in our example the parallel resonator is replaced by a

voltage source, a series resonator would be replaced by a

current source). Then we use the harmonic balance simulator

to sweep the source amplitude a and to find the fundamental

component of the current which equals to N(a) defined by

the formula (5). Some harmonic balance simulators, such as

the HP Microwave Design System used here, allow the user

to calculate derivatives of the circuit variables with respect

to circuit parameters and other circuit variables. We use this

capability to calculate N’ (a)—the derivative of the current

fundamental N(a) with respect to the swept amplitude.

2.3.1 Example 1: N(a) and N’(a) simulated in the way

described above are shown in Fig. 3 for Meissner oscillator

at two bias points.

2.3.2 Example 2: N(a) and N’(a) simulated in the way

described above are shown in Fig. 4 for van der Pol cubic

nonlinetity (Fig. l(a) with n(v) = –v + v3/3) G = O). In this

case they cart be also found analytically (see (40) in Appendix

II, Section B), the plots simulated for the circuit in Fig. 2(a)

and the ones calculated from the equation (40) are shown in

Fig. 4(b), their traces are the same and cover each other.

III. SYNCHRONIZED OSCILLATIONS

We show in this section how the large signal characteristic

N(a) can be used to determine the existence and,+tability

of synchronized oscillations. For sake of clarity we shall use

N(a) simulated for the Meissner oscillator (Fig. l(b)), biased

at point QI (Fig. 3(b)), however, the analysis remains valid for

any high-Q circuit with N-shaped nonlinear characteristics.
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Fig.3. Large signatcharacteristics lV(a) for Meissner oscillator at different

bias. (a) operating points, (b) IV(a) for bias at Q1, (c) IV(a) for bias at Q2.

3.1 Resonance Characteristics

In this section we derive a simple algebraic equation,

which describes the relationship between the amplitude of the

oscillations a and that of the locking signal b and the amount

of detuning 6. Moreover, for fixed detuning or fixed forcing,

the equation can be easily represented graphically.

Letusnote thata ~onstant solutionof the equations (3)and

(4) can be found from:

Ga+N(a)=-bcos # rSa=bsin~ (6)

Consequently the constant solution exists only if the following

inequality holds:

(7)

w I I I I I I

II

I

(a)

N(a) [5amp/divl
N’(a) [5mho/divl

/dlvl

+

[O:25V/dwl

o
[.25V/divl

(b)

Fig. 4. Vander Pol oscillator, (a)current-voltage characteristics n(v). (b)
The simulated large signal characteristics IV(a) and Its derivative N’(a)

coincide with those calculated analytically.

This condition is a rigorous representation of the fact that

the frequency locks only when the synchronizing frequency is

close to the natural frequency of the circuit (i.e., the “amount

of detuning” is small).

Adding up the squared sides of (6) we conlcude that the

amplitude of locked oscillations satisfies the scalar equation:

(Ga + IV(a))’ + a262 = b2 (8)

The above equation describes the relationship between the

oscillations amplitude a, the forcing amplitude b, and the

forcing frequency (represented here by detuning 6). Let us

interpret the equation (8) graphically for (i) fixed 8 and (ii)

fixed b: (i) fixed detuning 6 (Fig. 5(a)).

Since we have already simulated the N(a), we can easily
plot the left hand side of (8) (denoted lhs in the Fig. 5(a))

for different values of detuning 6. Consider for example the

~(a) simulated for the Meissner oscillator at the operating

point Q1 (see Fig. 3(b)). The left hand side of (8), obtained

for different values of detuning 6 = 0.0,0.02,0.04,0.07, and

for N(a) from the Fig. 3(b) are shown in the Fig. 5(a). From

those plots we can determine graphically the solutions of (8),

i.e., the amplitudes of synchronized oscillations. Indeed, for

any value of b we find the value a for which a trace shown

in the Fig. 5(a) equals b’, the amplitude a found in this way

is the solution of (8).

For instance let b = 0.2 (b2 = 0.04). From Fig. 5(a) we

can find the amplitude of oscillations for different amounts of
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Fig. 5. Graphicat representation of (8) for Meissner oscillator biased at
point Q1. A, B, C, D, E, F, Gdenote the solutions obtained forb = 0.2

and 6 = 0.07,0.04,0.02,0.0. (a) The curved traces correspond to the left
hand side of the equation(8), simulated fordifferentti. The horizontal lines

denote different levels of the square of the synchronizing amplitude ~ if
bz > 0.436 (i.e. b > 0.66) we get armique solution, if b< 0.66 we get

ttrrccsolutions, ifbz < 0.04 (i.e. b< 0.2), then the frequency characteristics
(shown in Fig. 5(b)) becomes disconnected. (b) Resonance characteristics
(amplitude vs. detuning). Different traces correspond to different amplitudes

of the synchronizing signat: b = 0.13,0.2,0.4,0.66.

dettming. For 8 = 0.07mho4 the oscillations amplitude equals

2.8 V(point Ain Fig. 5(a)), for6 = 0.04mhoit equals 4.5

V(point Bin Fig. 5(a)), for6=0.02mhoweget3 solutions

with amplitudes equal to 6.8 V, 9.2 V, and 9.7 V (points C,

E, and Fin Fig. 5(a)), for 6 = 0.00mho we get 2 solutions

with amplitudes equal to 8.6 V and 10.2 V (points D and G

in Fig. 5).

This procedure can be repeated for any b and 6.

Even greater advantage of the plots shown in the Fig. 5(a) is

that using them one can easily determine the region in which

the multiple solutions exist. Let us note that, because of the

N-shaped nonlineiir characteristics, the plots bend for small

amounts of detuning 8<.07 and become monotonic for large

ones, when tia dothinates the decreasing part of N(a) in (8).

Therefore if b < 0.66 and 6 < 0.7, then the system

possesses 3 solutions (this is the region where the curves bent),

otherwise only one solution exists (either curves in Fig. 5(a)

are monotonic ur b crosses them above the bent part). (ii)

Fixed forcing b.

Alternatively the behavior of the circuit can be (and indeed

is most often) represented by the resonance characteristics

which represent variation of amplitude of oscillations versus

4since we included capacitance in the definition of detuning in (3) snd (4)
its unit became a “mho.”

detuning i.e., a vs 6. Fig. 5(b) shows those characteristics,

simulated for Meissner oscillator, for the forcing equal to

b = 0.13,0.20,0.40,0.66.

Note that the specific “inverted vase” or “octopus” shape,

which is a typical feature of those plots, is the immediate

consequence of the property that the nonlinear characteristics

n(v) is N-shaped.

Similarly as before we can find the amplitude of oscillations.

For instance if we take the characteristic for b = 0.2 we easily

find amplitudes for any value of detuning, in particular for

6 = 0.07,0.04,0.02,0.0, we get the same amplitudes (a =

2.8,4.5,6.8,8.6,9.2, 9.7, 10.2) as in the Fig. 5(a), marked here

by A, B, C, D, E, F, G.

As before the regions in which multiple solutions exist

are easy to determine: the answer is the same as above:

6< .07, b < 0.66.

To this author’s knowledge the resonance characteristics

have been presented in the past only for the van der Pol

oscillator [3]; [4], [10], [11]. Here we have shown how to

apply them to general circuits.

3.2 Synchronization Zones

In the previous section we have determined conditions of

existence and the number of steady state oscillations and be-

havior of their amplitude as a function of detuning. However,

in order to analyze the frequency lock we need to determine

their stability. For that purpose we use the characteristic N(a)

and its derivative N’(a) determined above.

we prove here that the stable oscillations correspond to

those parts of resonance characteristics which lie above a

certain critical number al and decrease when 16I grows.

Let us return to the circuit equations (3) and (4) and

calculate the trace and the determinant of their Jacobian

matrix:

(9)i%(a) = – & ( N(a)
2G + N’(a) + —

)

( %+ ’2) ’10)
A(a) = *((G+ N’(a)) G+

which cart be calculated by a harmonic balance simulator with

ability to use equations, such as the HP Microwave Design

System used here.

We show in Appendix I that the stability of the solutions

of (3) and (4) can be determined from the plots of tr(a) and

A(a). We also prove in Appendix I that for an “N -shaped”

n(v), there exists a critical value al (see Fig. 5(b) and Fig.

6) such that the stable oscillations correspond to those parts

of resonattce characteristics which lie above al and decrease

when 161grows.

We can now formulate the algorithm for finding the syn-

chronization zones:

Algorithm:

O. Put the synchronizing signal to zero and replace the

resonator by a sinusoidal source.

1. Perform harmonic balance simulation sweeping the am-

plitude of the introduced source.
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Fig. 6. Plots of IV(a), N’ (a), and tr(a) simulated for the Meissner oscil-
lator biased at point Q1. The values of a at which IV(a), N’(a), and tr(a)

cross zero are mmked respectively as a~, ao, a 1.

2. Plot the resonance characteristics i.e., the oscillations

amplitude vs. detuning.

3. Plot tr(a), determine al.

4. Por any detuning and forcing find the amplitude of oscill-

ations as shown in the Fig. 5(b). If a resonance characteristic

bends over itself, then the circuit has three solutions, the stable

solution corresponds to those parts of resonance characteristics

which lie above al and decrease when 16I grows. For the large

forcing the characteristics do not bend and the unique solution

is stable as long as the oscillations amplitude remains larger

than al.

3.2.1 Example 1 Concluded

Let us rettifn to the Meissner oscillator biased at point Ql:

The resonance characteristics obtained for different ampli-

tudes of the synchronizing signal are shown in the Fig. 5(b),

the plot of tr-(a) is shown in Fig, 6.
From the Fig. 6 we find al and plot it in the Fig. 5(b).

The part of the single valued characteristics “b = .66” which

lie above al, and the parts of the multivalued characteristics

“b = .4, b = .2” limited by vertical slopes correspond to stable

oscillations.5

It follows from the Fig. 5(a) that for small values of
2 < .04) the resonance

synchronizing signal (such that b

characteristics become disconnected. One part of such a dis-

connected characteristic, obtained for b = .13, appears in the

5The ~h~a~teristic b = o.4 has yet another stability region: when the

characteristic bends the second time there is a small region when it still
remains above a 1 and decreases with growing 161, the region corresponds
to stable oscillations.

2.50______
a=2 ,31--

a=li 63--

a=l. 155--
._b=l ,09

0.50 ----- --b=O.77
-1.0 0.0 1.0

detunlng

Fig. 7. Resonance characteristics for van der Pol oscillator

Fig. 5(b). The other part which is not shown there can be

found from the Fig. 5(a).

IV. Van der Pol OSCillatOr AS A BENCHMARK

In this section we use the van der Pol oscillator to check

accuracy of a commercially available CAD package.

In the case analyzed by van der Pol (n(v) = –v +

(v3/3), G = O,C = lF, L = lH) we can explicitly find

N(a), N’(a):

N(a) = - .(1= (;)2)

()
N’(a) =–l–3;2

(11)

(12)

Consequently, in order to check accuracy of a CAD pack-

age, one can compare the simulated characteristics and the

ones calcttlated analytically as shown in the Fig. 4(b) above.

We can also calculate explicitly (8)

a2((l-(:)2)2+62)=b2 (13)

and use it to check accuracy of the simulated resonance

characteristics. For example we can find from (13) that the

smallest value for which the resonance characteristics do not

split is b = 0.77 A (which is the value of local maximum

of the left hand side of (13) for 6 = O). In that case

(b = 0.77,6 = O) the amplitude of oscillations equal to

a = 1.155 V and a = 2.309 V. Similarity the minimum vahte

of b for which there are no multiple solutions is b = 1.09

A and the corresponding amplitude and detuning (i.e., the

smallest detuning at which there are no multiple solutions)

are a = 1.63, 6 = 0.577 (which is the value of 6 at which the

left hand side of (13) ceases of have local maximum).
As shown in Fig 7, the simulated results coincide with those

calculated above.

V. CONCLUSIONS

We have presented simulation and theory of synchronized

nonlinear oscillators. Throughout the paper we heavily relied

on harmonic balance simulation and showed how its results

could be enhaneed by the theory of averaging.

We used HP Microwave Design System to obtain the large-

signal characteristic N(a) and resonance characteristics for

Meissner oscillator, to the author’s knowledge such character-

istics were obtained in the past only for van der Pol oscillator.
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Those characteristics allowed us to determine the oscilla-

tions stability and the areas where multiple solutions exist and

also to determine the oscillations amplitude for a given b and 6

(i.e., the amplitude and frequency of the synchronizing signal).

Finally we provided explicit formulae against which any

simulator can be easily tested.

APPENDIX I

STABILITY

A. Avei-aged Equations

The stability of constant solutions of (3) and (4) can be

determined by the sign of the trace i% and determinant A of

the right hand side linearized about these solutions.

Nwely, the solution is stable if A >0 and tr <0. It turns

out that both the determinant and the trace can be determined

by N(a) and its derivative. Since both N(a) and N’(a) can

be simulated and plotted we are able to determine stability of

oscillations from the nonlinear resonance characteristics.

Indeed the averaged equation reads:

Ga + N(a) + bcos~
al=—

2C

~f=-&+!?#
its Jacobian matrix (derivative) equals to

[

G N’(a) +bsinq$——

2
J = 2Cb;in C

b C:?~
—

2Ca2 2Ca 1
As it is evaluated at the constant solution at which:

Ga+iV(a) = –bcos@

~a=bsin~

we get:

[

-(G + N’(a)

J=&
–&/a

( )1
- G;%~

a

and consequently:

tr-(a) = – & ( N(a)
2G+ N’(a)+ —

a )

~(a) = A((G + N’(a))(G + ~) + ~’)

To simplify notation let us define:

~(a) = Ga + N(a)

so that:

‘r(a)=-~@a)+9
( (~)’”)A(a) = & ~(a)

(14)

(15)

(16)

(17)

18)

(19)

(20)

(21)

(22)

Once we have got the above formulae we can determine

stability of oscillations by plotting tr-(a) and A(a).

B. Stability

For the N-shaped nonlinear characteristics stability becomes

very easy to determine. Namely as oscillation’s stability is de-

termined by the signs of trand A we shall present geometrical

criteria for evaluation of their signs.

Let us start with the trace tr, a typical function N(a) is

negative for small a and monotonically decreases till some

value which we denote a., it then increases until it reaches

zero at az and remains growing and positive (see Fig. 6).

Consequently ~’(a) is negative for a < a. and positive for

a > ao. Therefore the trace is always positive for a < a.

and negative for a > a2 > a.. The only area where the

sign of t~(a) is in doubt is between a. and a2 where ~(a)

is negative and fil (a) positive, but because both functions

grow monotonically for a. < a < a2 there is exactly

one value al such that the trace equals zero a = al and

is negative for a > al. Therefore the trace is negative

on those parts of resonance characteristics which lie above

al.

To determine stability for a > al we need to check A, we

prove below that its sign is directly related to the slope of

resonance characteristics (such as shown in Fig. 5).

Lemma For A > 0 the resonance characteristics decrease

when 16/ grows, for A <0 they increase when 181 grows, for

A = O they become vertical.

Therefore the stable oscillations correspond to those parts

of resonance characteristics which lie above al and decreases

when 161 grows.

Proof of the Lemma:

Note that in terms of ~(a) equation (8) takes the form

(fi(a))2 + (8a)2 = b2 (23)

We show that the sign of A can be determined from

resonance characteristics; namely A is positive on those parts

of resonance characteristics which decrease when the amount

of detuning 18I grows. For sake of being specific let us consider

the case when 6 > 0 (the case when 6 < 0 is dealt with in

the same way).

From the resonance characteristics (23) we can (locally) find

6 = 6(a) as a function of a and calculate its derivative 6’. It

is easy to see7 that

t?(a) =
–$i’(a)N(a) + (d(a))za

6(a)a2
(24)

Therefore we can rewrite the definition (22) of A as:

A= ~ad(a)b’(a) (25)

Consequently the sign of 6’ and that of A are opposite and

A >0 on those parts of the resonance characteristics which

decrease when 161grows.

bR@r~USly SPe&ing we require N(a) to be convex between ao ~d a!2.

7Proof follows from the implicit function theorem, also the derivative can
be obtained by differentiating (23).
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A. Averaged Equations

After substitution:

v(t)

iL(t)

APPENDIX II

= a cos (d + #)
sin (d+ ~)

=a ,. T

the circuit equations read:

a’ sin (tit+ ~) + aces (d + q$)(w + ~’)

= a cos (tit + ~)

Ca’ cos (L@+ q$)

– G’asin(wt + @)(cd + 4’)

—— ‘iL — TZ(’V) — (% — is

where at = (da/dt), # = (d@/dt), and i, = b cos wt

The equations simplify to:

where

‘(w-aasino-bco:w’)
we solve for a’ and #, which results in:

a’=fcosb’

4’= –~sing

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

After averaging the terms explicitly dependent on time, the

circuit equations read:

a, = _ Ga + N(a) + bcos (~)

#l=_l+b:~)

where

“=c(w-a‘CW2:W;“C(W
and

(34)

(35)

Wo) (36)

(37)

B. N(a) for Cubic Nonlinearity

For van der Pol equation we have: n(v) = –v + (v3/3)

consequently:

(aces 19)3]Cos~do
N(a) = - ~~”[acosd- ~

T

—

/[ 1
a cos 02 – ~a3(cos 0)4 dO

7C0

=:2( ())

2

al–~
2

(38)
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