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Nonlinear Synchronized LC
Oscillators: Theory and Simulation

Michal Odyniec

Abstract—The paper presents a rigorous analysis of synchro-
nized oscillators. The analyzed circuits exhibit strongly nonlinear
behavior such as frequency lock and existence of multiple solu-
tions and yet their behavior can be fully determined by large
signal characteristics obtained from harmonic balance simula-
tion. The results can be directly applied to diode and transistor
oscillators and can also serve as a benchmark in testing nonlinear
simulators.

I. INTRODUCTION

HE PAPER presents simulation and theory of a synchro-

nized nonlinear oscillator. It is based on the theory of
averaging [1], [2], presented in terms familiar to a design
engineer and illustrated by a transistor oscillator circuit.

We intend to achieve three goals:

1. Introduce a simple yet rigorous! analysis of synchroniza-
tion in typical oscillators.

2. Present applications of harmonic balance simulation to
a strongly nonlinear circuit. In particular we present a simple
algorithm for finding oscillations and stability zones.

3, Present a benchmark against which nonlinear simulators
can be tested.

We show that if a high-Q oscillator has a /N-shaped nonlin-
ear characteristics, then one can rigorously deduce important
design features of the circuit, such as the number of solutions
and their stability, nonlinear resonance characteristics and
lock-in regions, and also the parameter values for which the
unique solution exists. The results are formulated in terms
of “large signal” characteristics and are readily applicable to
diode and transistor oscillators.

In the final section of the paper the synchronized oscillator
is used as a benchmark against which different commercially
available nonlinear simulators can be tested. We believe that
there is a great need for such a benchmark in the engineering
community. Our circuit seems to be ideally suited for this
purpose: it is very simple, and yet it models frequency lock,
possesses multiple solutions, and has interesting resonance
characteristics which bend onto themselves (that poses an
additional challenge for CAD packages—namely the ability to
draw the multivalued characteristics). Moreover for the special
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1By “rigorous” we mean an analysis supported by analytically proven
theorems; so that when we find approximate solutions using a harmonic
balance simulator, we are sure that the exact solutions exist, are close to
the approximate ones, and have the same stability properties.
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Oscillator with the locking signal ¢; = b cos wt (a) Generic oscillator
model. (b) Meissner oscillator.

Fig. 1.

case of the circuit (described by the van der Pol oscillator)
the characteristics are well known and can be used to check
accuracy of CAD simulators.

II. CIRCUIT DESCRIPTION

2.a Generic RLC Oscillator with Synchronizing Signal

Let us consider a simple oscillator with locking signal
is = bcoswt, shown in Fig. la, in which the resonator is
modelled by a parallel RLC circuit and the active part of the
circuit by an N-shaped nonlinear characteristic:

i =n(v)

where n’(0) can be interpreted as the small signal conductance
of the active part of the circuit.
The circuit is described by a simple second other equation:

d’LL
L— =
at "

O@ = —z'L—n(v)

dt
— Gu — beoswt ¢))

Note that we assume very little about the nonlinear char-
acteristics which makes our results easily applicable to wide
class of oscillators. Thus the equations (1) apply directly to the
circuits in which current-voltage characteristics are N-shaped.
This includes IMPATT, Gunn, and tunnel diode oscillators,
also Meissner oscillator shown in Fig. 1(b).
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One can further argue that various resonators are (at least
about the resonace) well modelled by an RLC resonator,
and that transistors with feedback, and of course negative-
resistance diodes, have the N -shaped characteristics. There-
fore the circuit of Fig. 1(a) can be treated as a generic
oscillator, which possesses the main features of any high-Q
oscilator circuit.

Throughout the paper we shall use two examples: (i) Meiss-
ner oscillator (Fig. 1(b)) to illustrate design applications and
(ii) van der Pol oscillator (Fig. 1(a)) with n(v) = —v +
v%/3, G = 0) for connection to well-established theory.

2.2 Simplified Circuit Equations

When the circuit has high () and we expect the oscillations
to be close to sinusoidal, then it is convenient to introduce
amplitude and phase (a, ¢) as the new variables defined by:

o(t) = acos(wt+¢)  in(t) = S EED )
wlL
and to work with the following “averaged”? equations:
Ga + N{a) + bcos (¢)
! — —_—
‘= 2C ©)
§  bsin(¢)
/ = ——
? =5 T 20 4)

where (a,¢) denote the amplitude and phase of oscillations,
b denotes the amplitude and w the frequency of the locking
signal, w3 = 1/LC the natural frequency, § = C(w? —
w2 /w) = 2C(w — wp) “the amount of detuning,” and

N(a) = %/0 n(a cos @) cosf df )]

denotes the fundamental of the current. We show in the
next section that N(a) can be easily obtained from harmonic
balance simulators.

One proves [1, 2] that for high-Q oscillators the amplitude
and phase of oscillatioris are well approximated by the constant
solutions of (3) and (4) and that if the constant solutions are
stable so are the oscillations. Let us note that the constant so-
lutions of the averaged equations coincide with those obtained
by the harmonic balance method [3], [5], [8].

2.3 Nonlinear RF Characteristics N(a)

The nonlinear RF characteristics N(a), defined above, is the
fundamental component of Fourier expansion of the current
through the nonlinear element and has the physical meaning
of “large-signal amplitude,” similar to phasors used in linear
analysis. It can be used to define “large signal” impedance
and “large signal” S-parameters [7], [9].2 1t is the basic tool
in nonlinear design. When expressed in terms of S-parameters
it has been applied to design of free running oscillators in [6],
(71, 191, [12].

2The detailed transformation of (1) into (3)—~(4) is presented in Appendix
1L

3Where the phasors used in the standard definition are teplaced by the
fundamental. Let us also note that the S-parameters as measured on a vector
analyzer are indeed the ratios of fundamentals of the incident and reflected
signal.
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Fig.2. Simulation of the large signal characteristics N (a), vs(t) = a coswt.
(a) Generic oscillator, (b) Meissner oscillator.

In this paper, N(a) and N’(a) (which is the derivative of
N(a) with respect to a) become the main vehicle in apply-
ing the theoretical results on averaging to the characteristics
obtained from the harmonic balance simulation.

They are calculated as follows: In the oscillator circuit we
put the locking signal equal to zero and replace the resonator
by a sinusoidal voltage source as shown in the Fig. 2(a) and
(b) (in our example the parallel resonator is replaced by a
voltage source, a series resonator would be replaced by a
current source). Then we use the harmonic balance simulator
to sweep the source amplitude ¢ and to find the fundamental
component of the current which equals to N(a) defined by
the formula (5). Some harmonic balance simulators, such as
the HP Microwave Design System used here, allow the user
to calculate derivatives of the circuit variables with respect
to circuit parameters and other circuit variables. We use this
capability to calculate N'(a)—the derivative of the current
fundamental N(a) with respect to the swept amplitude.

2.3.1 Example 1: N(a) and N’'(a) simulated in the way
described above are shown in Fig. 3 for Meissner oscillator
at two bias points. '

2.3.2 Example 2: N(a) and N'(a) simulated in the way
described above are shown in Fig. 4 for van der Pol cubic
nonlinearity (Fig. 1(a) with n(v) = —v+v*/3,G = 0). In this
case they can be also found analytically (see (40) in Appendix
II, Section B), the plots simulated for the circuit in Fig. 2(a)
and the ones calculated from the equation (40) are shown in
Fig. 4(b), their traces are the same and cover each other.

III. SYNCHRONIZED OSCILLATIONS

We show in this section how the large signal characteristic
N(a) can be used to determine the existence and_stability
of synchronized oscillations. For sake of clarity we shall use
N(a) simulated for the Meissner oscillator (Fig. 1(b)), biased
at point Q1 (Fig. 3(b)), however, the analysis remains valid for
any high-Q circuit with N-shaped nonlinear characteristics.
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Fig. 3. Large signal characteristics N{a) for Meissner oscillator at different
bias. (a) operating points, (b) N(a) for bias at Q1, (c) N(a) for bias at Q2.

3.1 Resonance Characteristics

In this section we derive a simple algebraic equation,
which describes the relationship between the amplitude of the
oscillations a and that of the locking signal b and the amount
of detuning 6. Moreover, for fixed detuning or fixed forcing,
the equation can be easily represented graphically.

Let us note that a constant solution of the equations (3) and

(4) can be found from:
Ga+ N(a) = —bcos¢  da =bsing (6)

Consequently the constant solution exists only if the following
inequality holds:
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Fig. 4. Van der Pol oscillator, (a) current-voltage characteristics n(v). (b)
The simulated large signal characteristics N(a) and 1its derivative N'(a)
coincide with those calculated analytically.

This condition is a rigorous representation of the fact that
the frequency locks only when the synchronizing frequency is
close to the natural frequency of the circuit (i.e., the “amount
of detuning” is small).

Adding up the squared sides of (6) we conlcude that the
amplitude of locked oscillations satisfies the scalar equation:

(Ga + N(a))? + 0?62 = b? @®)

The above equation describes the relationship between the
oscillations amplitude a, the forcing amplitude b, and the
forcing frequency (represented here by detuning §). Let us
interpret the equation (8) graphically for (i) fixed 6 and (ii)
fixed b: (i) fixed detuning é (Fig. 5(a)).

Since we have already simulated the N(a), we can easily
plot the left hand side of (8) (denoted lhs in the Fig. 5(a))
for different values of detuning . Consider for example the
N(a) simulated for the Meissner oscillator at the operating
point Q1 (see Fig. 3(b)). The left hand side of (8), obtained
for different values of detuning 6 = 0.0, 0.02,0.04,0.07, and
for N{a) from the Fig. 3(b) are shown in the Fig. 5(a). From
those plots we can determine graphically the solutions of (8),
i.e., the amplitudes of synchronized oscillations. Indeed, for
any value of b we find the value a for which a trace shown
in the Fig. 5(a) equals b2, the amplitude o found in this way
is the solution of (8).

For instance let b = 0.2(b? = 0.04). From Fig. 5(a) we
can find the amplitude of oscillations for different amounts of
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Fig. 5. Graphical representation of (8) for Meissner oscillator biased at
point Q1. A, B, C, D, E, F, G denote the solutions obtained for b = 0.2
and § = 0.07,0.04,0.02,0.0. (a) The curved traces correspond to the left
hand side of the equation (8), simulated for different . The horizontal lines
denote different levels of the square of the synchronizing amplitude b; if
b2 > 0.436 (i.e. b > 0.66) we get a unique solution, if b < 0.66 we get
three solutions, if b2 < 0.04 (i.e. b < 0.2), then the frequency characteristics
(shown in Fig. 5(b)) becomes disconnected. (b) Resonance characteristics
(amplitude vs. detuning). Different traces correspond to different amplitudes
of the synchronizing signal: b = 0.13,0.2,0.4,0.66.

detuning. For § = 0.07mho* the oscillations amplitude equals
2.8 V (point A in Fig. 5(a)), for 6 = 0.04mho it equals 4.5
V (point B in Fig. 5(a)), for 6 = 0.02mho we get 3 solutions
with amplitudes equal to 6.8 V, 9.2 V, and 9.7 V (points C
E, and F in Fig. 5(a)), for 6 = 0.00mho we get 2 solutions
with amplitudes equal to 8.6 V and 10.2 V (points D and G
in Fig. 5).

This procedure can be repeated for any b and é.

Even greater advantage of the plots shown in the Fig. 5(a) is
that using them one cin easily determine the region in which
the multiple solutions exist. Let us note that, because of the
N-shaped nonlinear characteristics, the plots bend for small
amounts of detuning 6 < .07 and become monotonic for large
ones, when §a dorhinates the decreasing part of N(a) in (8).

Therefore if b < 0.66 and 6 < 0.7, then the system
possesses 3 solutions (this is the region where the curves bent),
otherwise only one solution exists (either curves in Fig. 5(a)
arc monotonic or & crosses them above the bent part). (ii)
Fixed forcing b.

Alternatively the behavior of the circuit can be (and indeed
is most often) represented by the resonance characteristics
which represent variation of amplitude of oscillations versus

4since we included capac1tance in the definition of detunmg in (3) and (4)
its unit became a “mho.”

detuning i.e., a vs 6. Fig. 5(b) shows those characteristics,
simulated for Meissner oscillator, for the forcing equal to
b = 0.13,0.20,0.40,0.66.

Note that the specific “inverted vase” or “octopus” shape,
which is 4 typical feature of those plots, is the immediate
consequence of the property that the nonhnear characteristics
n(v) is N-shaped.

Similarly as before we can find the amplitude of oscillations.
For instance if we take the characteristic for b = 0.2 we easily
find amplitudes for any value of detuning, in particular for
6 = 0.07,0.04,0.02,0.0, we get the same amplitudes (@ =
2.8,4.5,6.8,8.6,9.2,9.7,10.2) as in the Fig. 5(a), marked here
by A, B, C, D, E, F, G

As before the regions in which multiple solutions exist
are easy to determine: the answer is the same as above:
6 < 07,6 < 0.66.

To this author’s knowledge the resonance characteristics
have been presented in the past only for the van der Pol
oscillator [3]; [4], [10], [11]. Here we have shown how to
apply them to general circuits.

3.2 Synchronization Zones

In the previous section we have determined conditions of
existence and the number of steady state oscillations and be-
havior of their amplitude as a function of detuning. However,
in order to analyze the frequency lock we need to determine
their stability. For that purpose we use the characteristic N(a)
and its derivative N’(a) determined above.

We prove here that the stable oscillations correspond to
those parts of resonance characteristics which lie above a
certain critical number a; and decrease when |§| grows.

Let us return to the circuit equations (3) and (4) and
calculate the trace and the determinant of their Jacobian

matrix:
tr(a) = — 51-0— (ZG V(@) + Y i‘”) ©)
Ala) = 42,2 (G + N'(a)) (G + N )) + 52) (10)

which can be calculated by a harmonic balance simulator with
ability to use equations, such as the HP Microwave Design
System used here.

We show in Appendix I that the stability of the solutions
of (3) and {4) can be determined from the plots of tr(a) and
A(a). We also prove in Appendix I that for an “N -shaped”
n(v), there exists a critical value al (see Fig. 5(b) and Fig.
6) such that the stable oscillations correspond to those parts
of resonarice characteristics which lie above al and decrease
when |§| grows.

We can now formulate the algorithm for finding the syn-
chronization zones:

Algorithm:

0. Put the synchronizing signal to zero and replace the
reasonator by a sinusoidal source.

1. Perform harmonic balance simulation sweeping the am-
plitude of the introduced source.
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Fig. 6. Plots of N(a), N'(a). and tr(a) simulated for the Meissner oscil-
lator biased at point Q1. The values of ¢ at which N(a), N'(a), and tr(a)
cross zero are marked respectively as a2, ag, @1.

2. Plot the resonance characteristics i.e., the oscillations
amplitude vs. detuning.

3. Plot tr(a), determine a;.

4, For any detuning and forcing find the amplitude of oscila-
tions as shown in the Fig. 5(b). If a resonance characteristic
bends over itself, then the circuit has three solutions, the stable
solution corresponds to those parts of resonance characteristics
which lie above al and decrease when |6| grows. For the large
forcing the characteristics do not bend and the unique solution
is stable as long as the oscillations amplitude remains larger
than al.

3.2.1 Example 1 Concluded

Let us retiin to the Meissner oscillator biased at point Q1:

The resonance characteristics obtained for different ampli-
tudes of the synchronizing signal are shown in the Fig. 5(b),
the plot of tr(a) is shown in Fig. 6.

From the Fig. 6 we find al and plot it in the Fig. 5(b).
The part of the single valued characteristics “b = .66” which
lie above al, and the parts of the multivalued characteristics
“b = .4,b = .2” limited by vertical slopes correspond to stable
oscillations.’

It follows from the Fig. 5(a) that for small values of
synchronizing signal (such that > < .04) the resonance
characteristics become disconnected. One part of such a dis-
connected characteristic, obtained for b = .13, appears in the

5The characteristic b = 0.4 has yet another stability region: when the
characteristic bends the second time there is a small region when it still
remains above a; and decreases with growing |§|, the region corresponds
to stable oscillations.
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Fig. 7. Resonance charactenstics for van der Pol oscillator.

Fig. 5(b). The other part which is not shown there can be
found from the Fig. 5(a).

IV. Van der Pol OSCILLATOR AS A BENCHMARK

In this section we use the van der Pol oscillator to check
accuracy of a commercially available CAD package.

In the case analyzed by van der Pol (n(v) = —v +
(v*/3),G = 0,C = 1F,L = 1H) we can explicitly find

N(a), N'(a): )
N(a) = —a(l - (%) ) (1)
N'(a)=—1- 3(%)2 (12)

Consequently, in order to check accuracy of a CAD pack-
age, one can compare the simulated characteristics and the
ones calculated analytically as shown in the Fig. 4(b) above.

We can also calculate explicitly (8)

(- ()) +#) v

and use it to check accuracy of the simulated resonance
characteristics. For example we can find from (13) that the
smallest value for which the resonance characteristics do not
split is b = 0.77 A (which is the value of local maximum
of the left hand side of (13) for § = 0). In that case
(b = 0.77,6 = 0) the amplitude of oscillations equal to
a = 1.155 V and a = 2.309 V. Similarily the minimum value
of b for which there are no multiple solutions is b = 1.09
A and the corresponding amplitude and detuning (i.e., the
smallest detuning at which there are no multiple solutions)
are a = 1.63,6 = 0.577 (which is the value of § at which the
left hand side of (13) ceases of have local maximum).

As shown in Fig 7, the simulated results coincide with those
calculated above.

(13)

V. CONCLUSIONS

We have presented simulation and theory of synchronized
nonlinear oscillators. Throughout the paper we heavily relied
on harmonic balance simulation and showed how its results
could be enhaneed by the theory of averaging.

We used HP Microwave Design System to obtain the large-
signal characteristic N(a) and resonance characteristics for
Meissner oscillator, to the author’s knowledge such character-
istics were obtained in the past only for van der Pol oscillator.
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Those characteristics allowed us to determine the oscilla-
tions stability and the areas where multiple solutions exist and
also to determine the oscillations amplitude for a given b and 6
(i.e., the amplitude and frequency of the synchronizing signal).

Finally we provided explicit formulae against which any
simulator can be easily tested.

APPENDIX 1
STABILITY

A. Averaged Equations

The stability of constant solutions of (3) and (4) can be
determined by the sign of the trace tr and determinant A of
the right hand side linearized about these solutions.

Namely, the solution is stable if A > 0 and i < 0. It turns
out that both the determinant and the trace can be determined
by N(a) and its derivative. Since both N(a) and N’(a) can
be simulated and plotted we are able to determine stability of
oscillations from the nonlinear resonance characteristics.

Indeed the averaged equation reads:

o — Ga+ N(a) + bcos¢

2C (14)
) bsin ¢
/I — e
?= "5 30 (15)
its Jacobian matrix (derivative) equals to
_ G N'(a) | bsing
— 2C C 2C
J = B bsin é bcos ¢
2Ca? 2Ca
As it is evaluated at the constant solution at which:
Ga+ N(a) = —bcos¢ (16)
da =bsin¢ an
we get:
1 [-(G+N'(a) 6aN
T=3¢|  -5/a -(G+—%‘Q>
and consequently:
N
tr(a) = — % <2G + N'(a) + —%) 18)
1 N
Aa) = 107 ((G + N'(a)) (G + (a )) + 62> (19)

To simplify notation let us define:

N(a) = Ga+ N(a) (20)
so that:
tr(a) = 210 (N'( )+ N(a )> 1
Afa) = ( “'(a>( Lo )) + 62> 22)
4c?

Once we have got the above formulac we can determine
stability of oscillations by plotting ¢r(a) and A(a).

B. Stability

For the N-shaped nonlinear characteristics stability becomes
very easy to determine. Namely as oscillation’s stability is de-
termined by the signs of ¢r and A we shall present geometrical
criteria for evaluation of their signs. ~

Let us start with the trace ¢r, a typical function N(a) is
negative for small ¢ and monotonically decreases till some
value which we denote ag, it then increases until it reaches
zero at as and remains growing and positive (see Fig. 6).
Consequently N'(a) is negative for ¢ < ao and positive for
o > ao. Therefore the trace is always positive for a < ag
and negative for @ > as > ag. The only area where the
sign of ¢r(a) is in doubt is between ao and ay where N(a)
is negative and N’ ( ) positive, but because both functions
grow monotonically® for ap < a < ay there is exactly
one value a; such that the trace equals zero ¢ = a; and
is negative for @ > aj. Therefore the trace is negative
on those parts of resonance characteristics which lie above
ai.

To determine stability for @ > al we need to check A, we
prove below that its sign is directly related to the slope of
resonance characteristics (such as shown in Fig. 5).

Lemma: For A > 0 the resonance characteristics decrease
when |8] grows, for A < 0 they increase when |8| grows, for
A = 0 they become vertical.

Therefore the stable oscillations correspond to those parts
of resonance characteristics which lie above a; and decreases
when |8| grows.

Proof of the Lemma:

Note that in terms of N (a) equation (8) takes the form:

(N(a))? + (6a)? = b

(23)

We show that the sign of A can be determined from
resonance characteristics; namely A is positive on those parts
of resonance characteristics which decrease when the amount
of detuning |6| grows. For sake of being specific let us consider
the case when 6 > 0 (the case when § < 0 is dealt with in
the same way).

From the resonance characteristics (23) we can (locally) find
6 = 6(a) as a function of a and calculate its derivative . It
is easy to see’ that

—N’(a)N(a) + (8(a))?a
1Y —
8'(a) = 5(a)a? 24)
Therefore we can rewrite the definition (22) of A as:
A = =L as(a)8 (o) 25)
~ i

Consequently the sign of §’ and that of A are opposite and
A > 0 on those parts of the resonance characteristics which
decrease when |§| grows.

6Rigorously speaking we require N(a) to be convex between ag and ag.

7Proof follows from the implicit function theorem, also the derivative can
be obtained by differentiating (23).
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APPENDIX 1I

A. Averaged Equations

After substitution:

v(t) = acos (wt + ¢)

i t
iz(t) = a%%ﬂ 26)
the circuit equations read:
a' sin (wt + ¢) + acos (wt + ¢)(w + ¢')
w ;
= acos{wt + ¢) 27
Ca’ cos (wt + ¢)
— Casin (wt + ¢)(w + ¢')
= —ir —n(v) — Gv—is (28)
where o’ = (da/dt), ¢’ = (d¢/dt), and i; = bcoswt
The equations simplify to:
sinf  acosf ||a 0
|:COS€ —asin&] |:(;5/:| N [f} 29
where
6 =wt+¢ (30)
fe - Gacosf n(acosf)
- C C
1 . bcos (wt)
+(w—wLC>asm€—T 3D
we solve for a’ and ¢’, which results in:
a' = fcosf (32)
¢ = — gsme (33)

After averaging the terms explicitly dependent on time, the
circuit equations read:

,__ Ga+ N(a)+bcos(¢)

a = e 39
, §  bsin(¢)
?="5%" 204 G35)

1 w? — wE

N(a)=— /7r n(acos ) cosb df 37
0

B. N(a) for Cubic Nonlinearity

For van der Pol equation we have: n(v) = —v + (v*/3)
consequently:
T 0 3
N(a)= - —2—/ [acosf — (aﬂ—)—]—cosﬁdﬁ
T Jo 3

()
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